dsv
MSP Vorbereitung
MSP Vorbereitung
Kartei Details
Karten | 12 |
---|---|
Sprache | Deutsch |
Kategorie | Elektrotechnik |
Stufe | Universität |
Erstellt / Aktualisiert | 23.01.2017 / 23.01.2017 |
Weblink |
https://card2brain.ch/box/20170123_dsv
|
Einbinden |
<iframe src="https://card2brain.ch/box/20170123_dsv/embed" width="780" height="150" scrolling="no" frameborder="0"></iframe>
|
Fourierreihe ak
\(a_k = \frac{2}{T_p} \int_0^{T_p} X(t) \cdot cos(2\pi f_pk t)dt\)
Fourierreihe bk
\(b_k = \frac{2}{T_p} \int_0^{T_p} X(t) \cdot sin(2\pi f_pk t)dt\)
Fourrierreihe x(t)
\(x(t) = \frac{a_0}{2}+\displaystyle\sum_{k=1}^{\infty} \big(a_k\cdot cos(2\pi f_pkt+b_k \cdot sin(2\pi f_pkt \big )\)
Fourierreihe x(t)
\(x(t) = \frac{A_0}{2}+\displaystyle\sum_{k=1}^{\infty} A_k \cdot cos(2\pi f_pkt + \varphi_k)\)
Fourier-Transformation x(t) -> X(f)
\(X(f) = \int_{-\infty}^{\infty} x(t) \cdot \mathrm{e}^{-j2\pi f t}dt\)
Fouriertransformation X(f) -> x(t)
\(x(t) = \int_{-\infty}^{\infty} X(f) \cdot \mathrm{e}^{+j2\pi f t}df\)
z-Transformation laplace -> z
\(z = \mathrm{e}^{sT}\)
Abtasttheorem für BP-Signale
\(0 \leq k \leq \frac{f_u}{B}\)
\(\frac{2\cdot f_o}{k+1} < f_s < \frac{2\cdot f_u}{k}\)
Anzahl benötigter binären Ziffern bei N unterscheidbaren Werten
\(M = \lceil log(N)\rceil\)