Statistik 1

Einführung und Messtheorie

Einführung und Messtheorie


Fichier Détails

Cartes-fiches 17
Langue Deutsch
Catégorie Psychologie
Niveau Université
Crée / Actualisé 26.12.2015 / 06.06.2024
Lien de web
https://card2brain.ch/box/statistik_13
Intégrer
<iframe src="https://card2brain.ch/box/statistik_13/embed" width="780" height="150" scrolling="no" frameborder="0"></iframe>

Aufgabe der Statistik?

Auswertung numerischer Daten

Gegenstand der Statistik:

  • Methoden zum Beschreiben und Interpretieren von Daten 

Aufgabe der beschreibenden/deskriptiven Statistik:

  1. Beschreibende und graphische Aufbereitung von Daten

  2. z.B. Häufigkeitsverteilungen, Gruppenunterschiede bezüglich eines Merkmals 

Aufgabe der schliessenden Statistik (Interferenzstatistik)

  1. Allgemeine Schlussfolgerungen über umfassendere Grundgesamtheiten (Populationen) durch Einbezug der Wahrscheinlichkeitstheorie 

unveränderliche Grösse?

Konstante

Merkmalsträger:

Objekte, die durch Variabeln beschrieben werden

Personen, Situationen etc.

Merkmalsausprägung:

  1. Konkreter Wert des Merkmals für einen Merkmalsträger 

intervenierende Variable:

  1. von lat. intervenire = dazwischen gehen

  2. Variable, die gleichzeitig Ursache und Wirkung ist

  3. Vermittelnde Variable bzw. Mediator 
 (von mittellat. mediator = Vermittler) 

diskrete Variable:

endlich viele Ausprägungen oder abzählbar unendlich viele Ausprägungen 
 (z.B. „Versuche bis zum richtigen Lösen einer Aufgabe“) 

stetige Variable:

überabzählbar viele Ausprägungen innerhalb eines Intervalls (z.B. Gewicht) 

Qualitative Variable („kategoriale Variable“) 

  • durch Qualität und nicht durch Ausmass gekennzeichnet

  • endliche Anzahl von Ausprägungen 

Quantitative Variable 

  • im Sinne einer Intensität oder eines Ausmasses interpretierbar

  • Ausprägungen daher immer Zahlen 

univariate statistische Methoden:

Beschreibung eines Merkmals

Bivariate statistische Methoden:

Zusammenhang zweier Merkmale

multivariate statistische Methoden:

Zusammenhang mehrerer Merkmale

Messen:

  • Messobjekten werden Zahlen bzw. Skalenwerte zugeordnet

  • Empirische Relationen zwischen den Messobjekten werden durch numerische Relationen der Skalenwerte repräsentiert 

Skalenniveau

  • Die Regeln, nach denen die zugeordneten Messwerte 
 (Zahlen) weiterverarbeitet werden können unterscheiden
 sich je nach Skalenniveau

  • Das Skalenniveau definiert die Art und Weise, in der 
 Unterschiede zwischen Messwerten interpretiert 
 werden können.