Vorlesung 7; point & line data

Universität Zürich GEO123, Frühlingssemester 2019 Tumasch Reichenbacher

Universität Zürich GEO123, Frühlingssemester 2019 Tumasch Reichenbacher

Jan Schwab

Jan Schwab

Set of flashcards Details

Flashcards 13
Language English
Category Geography
Level University
Created / Updated 25.08.2019 / 25.08.2019
Weblink
https://card2brain.ch/box/20190825_vorlesung_7_point_line_data
Embed
<iframe src="https://card2brain.ch/box/20190825_vorlesung_7_point_line_data/embed" width="780" height="150" scrolling="no" frameborder="0"></iframe>

lines, qualitativ

visual variables:

- size (Autobahn vs. Quartierstrasse)

- color hue (z.B. aktuelle Verkehrslage, rot - grün)

- texture (Kantonsgrenze vs. Gemeindegrenze)

different lines for different types of roads

qualitative flow maps

WAS? Wo?

z.B. Windströme, Meeresströme

lines, quantitative

visual variables:

- size

- color hue

- color value

different lines for different magnitudes

absolute data/ total values

quantitative flow maps

WIE VIEL? Was? Wo?

z.B. Verteilung Güter, Fliessrichtung, Bewegung -> Hauptströme ablesbar

 

Flow Map Types

- radial: klares Zentrum, nach aussen

- network

- distributiv: Verteilung über Raum, Abzweiger (eine Quelle spaltet sich auf)

Legende beinhaltet qualititive Farbunterschiede & quantitative Abstufung

Flow maps, design issues

- use color value/hue to avoid visual clutter instead of using line size

- increase figure/ground contrast: flow sits visually on top, small flow lines cut larger ones

- choose appropriate projection to support flow patterns

- include arrows if direction of flow is important

- include comprehensive and unambiguous legend

points, qualitative

visual variables:

- shape

- color hue

- orientation

- texture

different points for different types of features

Was? Wo?

points, quantitative

visual variables:

- size

- color value (hue)

different points for different magnitudes/features

absolute data/ total values

proportional point symbol map = graduated symbol map = Diagrammkarte

meistens Kreise, aber alle Formen möglich

Was? Wo? Wie?

unclassed (jeder Wert repräsentiert) / unclassed (Werte in Klassen)

point symbol types

- mimetic/ pictorial: characteristics of represented feature/ imitate as small picture/ graphically linked to represented feature

associative: hints on nature of presented feature

geometric: no similarity to represented feature, abstract, arbitrary

point symbol scaling

1. area of symbol proportional to data being mapped (circle: A = Pi * r2 -> Stadt A 4x grösser -> Radius nur 2x grösser)

2. range graded scaling (data classed, each class with representative symbol, scaled to midpoint of class)

3. psychological scaling (Wahrnehmung, Unter-/Überschätzung -> Power Law Function (siehe Bild)

 

Dot density map

Streuungskarten, z.B. Bevölkerung

Fokus auf Dichte

- one-to-one: 1 Punkt = 1 Event

- one-to-many: 1 Punkt = Magnitude

Vor-/Nachteile dot density map

+ einfach

+ zeigen Dichte

+ Zugriff auf Ursprungsdaten

- von Hand sehr mühsam

- mit Computer random