Anatomy and Histology

Sensory Systems

Sensory Systems


Kartei Details

Karten 49
Sprache English
Kategorie Medizin
Stufe Universität
Erstellt / Aktualisiert 20.01.2017 / 20.01.2017
Weblink
https://card2brain.ch/box/20170120_anatomy_and_histology2
Einbinden
<iframe src="https://card2brain.ch/box/20170120_anatomy_and_histology2/embed" width="780" height="150" scrolling="no" frameborder="0"></iframe>

How receptors work 

  • Receptor specificity: receptor is sensitive to a particular type of stimulus (structure-function)

  •  Receptive field: area monitored by a single receptor cell (size of field and localization are inversely related)

  •  Output via the axon is electrochemical

  • Tonic receptors: always active, signal frequency varies

    according to stimulus, e.g. eye photoreceptors

  • Phasic receptors: inactive, signal propagated only when stimulated, e.g. skin touch and pressure receptors

  • Combined tonic and phasic receptors: e.g. proprioceptors Adaptation: reduced sensitivity due to constant stimulation 

Types of Receptors - Classification by location

Types of Receptors

Classification by location

  • Exteroceptors: located on or near body surface. Respond to stimuli that arise external to the body. Detect pressure, touch, pain and temperature

  • Internoceptors or Visceroceptors: located internally. Receive stimuli from the internal body environment. Activated by pressure, stretching and chemical changes. Also mediate hunger and thirst.

  • Proprioceptors: specialized type of visceroceptors. Located in skeletal muscle, joint capsules and tendons. Information of body movement, spatial orientation and muscle stretch 

Types of Receptors - Classification by structure

  1. Classification by structure

    • Free nerve endings

      • Simplest, most common

      • Terminates in dendritic knobs

    • Encapsulated nerve endings

      • Connective tissue capsule surrounding their terminal or dendritic end

      • Primarily mechanoreceptors 

Types of Receptors - Classification by stimulus detected

Classification by stimulus detected

  • Nociceptors: Pain

    • Location: skin, joints and bone periostea, blood vessels, some viscera

    • Free nerve endings, large receptive field (making localizing the source difficult)

    • Thermo, mechano and chemoreceptors

    • Fast pain: “stabing” pain perceived in primary sensory cortex, triggers somatic reflexes

    • Slow pain: “aching” pain activates the thalamus and reticular formation

  • Thermoreceptors: Temperature

    • Location: skin dermis, skeletal muscle, liver, hypothalamus

    • Cold and warm receptors, phasic, i.e. adaptation

    • Same pathways as nociception to the primary sensory cortex, thalamus and reticular formation

  • Chemoreceptors: Chemical compounds

    • Location: respiratory centres (pH and Pco2), carotid bodies (pH, Pco2, Po2),

      aortic bodies (pH, Pco2, Po2)

    • Water and lipid soluble compounds

  • Mechanoreceptors: Touch

  • Photoreceptors: Light - 

    • Only in the eye 

Cornea

Hornhaut (Augen)

Corneoscleral Layer

  • Two components: sclera and cornea

  • Provides: structure, protection, points of attachment

  • Tough fibro-elastic capsule

  • Sclera = opaque, dense

    fibrous connective tissue,

    the “whites” of the eye

  • Provides attachment for 6

    extra-ocular muscles

  • Nerves and vessels

    penetrate the anterior surface (i.e. blood-shot eyes)

  • Corneal limbus: separates sclera and cornea 

Choroid Layer 

Three components: choroid, ciliary body, iris 

Iris 

Lens 

Cuboidal epithelium

Retinal Layers 

  1. Pigmented epithelial cells –single layer

  2. Photoreceptor layer - rod and cone processes

  3. Outer limiting membrane - thin eosinophilic structure. Separates photoreceptor layer from outer nuclear layer. Line of intercellular junctions between Muller cells and photoreceptor cells

  4. Outer nuclear layer - contains the cell bodies of the rod and cone photoreceptors.

  5. Outer plexiform layer - contains synaptic connections between the short axons of the photoreceptor cells and integrating neurones

  6. Inner nuclear layer - contains the cell bodies of the integrating neurons

  7. Inner plexiform layer - synaptic connections of integrating neurons with

    dendrites of neurones whose axons form the optic tract.

  8. Ganglion cell layer – contains the cells bodies of the optic tract neurons.

  9. Optic nerve fibers layer - layer of afferent fibres passing towards the optic disc to form the optic nerve.

  10. Inner limiting membrane - demarcates the innermost aspect of the retina from the vitreous body VB. Basement membrane of Muller cells. 

Rods 

  • Ca. 100 Million in humans

  • Monochrome

  • More sensitive to light

  • Allow night vision

  • Accumulate rhodopsin (purple)

  • Absent from fovea and macula

  • Increased density toward the

    periphery of the retina 

Cones 

  • Ca. 6 Million in humans

  • Color

  • Less sensitive to light

  • Need more light for stimulation

  • Accumulate other opsins: red (60%), green (30%), blue (10%)

  • Most densely concentrated in the fovea 

Fovea

Visual Pathways 

The External Ear 

Tympanic membrane 

Tympanic membrane: separates the external auditory canal from the middle ear.

  • Connective tissue membrane (fibrous layer) lined with skin (cuticular layer) on the outside and mucous membrane (mucous layer) on the inside

  • Fibrous layer is mostly type II and III collagen

  • Attached to the temporal bone via a

    fibrocartilagenous ring

  • Inner surface attached to the handle of the malleus

  • Ruptures can heal 

The Auditory Ossicles 

  • Smallest bones of the body

  • Malleus: handle (connected to tympanic membrane), neck, anterior process (attached to wall), head (articulates with incus)

  • Incus: head (articulates with malleus), short limb (attached to wall), long limb (articulates with stapes)

  • Stapes: head (articulates with incus), base (fits into oval window) 

Vestibule-balance 

Inside vestibule: Utricle and saccule

Cochlea-earing

Inside of the cochlea-earing: Cochlear duct

Semicircular canals-balance 

By the canal-balance: Membranous semicircular canals 

The Utricle and Saccule 

Auslösende Wahrnehmungsreize für die Macula-Organe sind Translationsbeschleunigungen und die Gravitation.

Das Vestibularorgan ist Teil des Innenohrs. Es gehört zu den Sinnesorganen und dient der Steuerung des Gleichgewichts. 

2 Anatomie

Das Vestibularorgan besteht beidseits aus drei Bogengängen und zwei Makulaorganen (Sacculus und Utriculus), die von Endolymphe ausgefüllt sind. 

3 Funktion

Auslösende Wahrnehmungsreize für die Macula-Organe sind Translationsbeschleunigungen und die Gravitation. Die auslösenden Reize für die Bogengangsorgane sind Drehbeschleunigungen. Von Störungen des Vestibularapparats kann Schwindel ausgehen, wie zum Beispiel beim Morbus Menière.

The Semi-Circular Ducts 

Die mit Endolymphe (nicht mit Luft, wie vor der Beschreibung durch den Anatomen Cotugno durchwegs angenommen wurde) gefüllten Bogengänge bilden das Drehsinnorgan und stehen nahezu senkrecht zueinander und erfassen so die Vektorkomponenten der Drehbeschleunigungen des Kopfes im Raum. Sie bestehen jeweils aus dem eigentlichen Bogen und aus einer Erweiterung, der Ampulle. In ihr liegen die Haarzellen der Bogengänge, die Sinneszellen des Gleichgewichtsorgans. Deren Spitzen ragen in einen Gallertkegel, die Cupula, die den Flüssigkeitsring unterbricht. Bei einer Drehbeschleunigung des Kopfes stützt sich die Endolymphe an der Cupula ab, die etwas nachgibt und so die in ihr liegenden Sinneshaarzellen reizt. Deren elektrisches Signal gelangt über den Bogengangnerv zum Gehirn.

The Cochlea 

Die Cochlea ist ein Teil des Innenohrs, der an die Form eines Schneckengehäuses erinnert. Er umfasst das Corti-Organ, die Stria vascularis, sowie Endolymphe und Perilymphe. Die Cochlea ist der Sitz der eigentlichen Schallempfindung.

The Cochlea Aufbau

Organ of Corti 

1 Definition

Das Corti-Organ ist der eigentliche Sitz des Gehörsinnes in der Cochlea des Innenohrs. Es ist ein System aus Sinnes- und Stützzellen, sowie Nervenfasern

2 Histologie

Das Corti-Organ sitzt der Basilarmembran (Membrana spiralis) auf und ist nach oben hin durch eine azelluläre Deckmembran (Tektorialmembran) vom Lumen des Ductus cochlearis abgetrennt.

Die für die Schallwahrnehmung verantwortlichen Sinneszellen des Corti-Organs werden Haarzellengenannt. Dabei handelt es sich um Mechanorezeptoren, die an ihrem apikalen Zellpol Stereozilien-Büschel tragen. Ihre Spitzen sind durch feine Zellmembranbrücken verbunden, die so genannten tip links. Man unterscheidet nach ihrer Lokalisation zwei Formen vor Haarzellen

Auditory Pathways 

Conchae in the Nasal Cavity 

Lateral walls:

  • Complex construction, both

    bone and cartilage

  • Three curved shelves project

    from lateral walls: superior, middle, inferior conchae (turbinate bones)

  • Four air channels: superior, middle, inferior meatus and spheno-ethmoidal recess

  • Increase surface area 

Respiratory region 

Respiratory region = lined with respiratory epithelium (pseudo- stratified ciliated columnar epithelial goblet cells), highly vascularised 

Olfactory Epithelium 

1. Sustentacular epithelial cells:

  • Mechanical and physiological support

  • Elongated with tapered base on basement membrane

  • Covered with long microvilli

  • Outer most layer

    2. Basal epithelial cells:

  • Small, conical

  • Stem cells for olfactory and sustentacular cells

  • Inner most, basal layer

  • Replacement of olfactory receptor cells

    3. Olfactory receptor cells:

  • Middle layer

  • Bipolar neurones

  • Single dendrite extending from olfactory middle

    stratum to free surface, terminating in an olfactory

    knob

  • Knob covered with up to 20 extremely long non-motile

    cilia (olfactory hairs)

  • Basal aspect has a single axon extending through the

    ethmoid bone to the olfactory bulb

  • Life time of approx. 2 weeks. Are regenerated!

  • 50 different “primary smells”

Olfactory Pathway

  1. Level of odor-producing chemicals reaches threshold

  2. Receptor potential followed bay action potential are formed

  3. Information passed to olfactory nerves, in olfactory bulb

  4. Goes into the thalamic and olfactory centers of the brain

  5. Received information is interpreted, integrated and memorized for future reference

  6. Formation of olfactory memories are also processed by components of limbic system : gyrus and hippocampus 

The Nasal Cavity 

Taste 

  • Taste buds: sense organs that respond to gustatory stimuli

  • Open at the surface to the taste pore

  • The majority are locate on the tong projections papillae

  • Some in the lining of the mouth and throat (mainly in children)

  • Chemoreceptors

  • Ca 10000 taste buds in adults

  • 3 types of cells:

    • Gustatory cells

    • Supporting cells

    • Basal cell

  • Regional differences in their distribution

  • Fungiform papillae: ca. 5 taste buds

  • Circumvallate papillae: ca 100 taste buds

  • Filiform papillae: no taste buds 

Gustatory Receptors 

Chemoreception

  • 10-12 day life span.

  • 3 types of cells:

    • Gustatory cells: long microvilli extending into the pore. Taste receptors

    • Supporting cells: long microvilli extending into the pore

    • Slender microvilli, taste hairs extend into surrounding fluids via the taste pore

    • Connected to nerve fibbers

    • Basal cell: precursor of the other cell types 

Gustatory Pathways 

Skin Mechanoreceptors 

Free nerve endings 

Unencapsulated: 

  1. 1)  Free nerve endings

  2. 2)  Merkel cells/tactile discs

  3. 3)  Root hair plexi

Papillary layer of the dermis Light touch, pressure, movement Tonic, small receptive field 

Merkel cells/tactile discs

Unencapsulated: 

  1. 1)  Free nerve endings 

  2. 2)  Merkel cells/tactile discs 

  3. 3)  Root hair plexi 

Papillary layer of the dermis Light touch, pressure, movement Tonic, small receptive field 

Root hair plexi 

Unencapsulated: 

  1. 1)  Free nerve endings 

  2. 2)  Merkel cells/tactile discs 

  3. 3)  Root hair plexi 

Papillary layer of the dermis Light touch, pressure, movement Tonic, small receptive field 

Meissner’s/tactile corpuscle

Encapsulated:

1) Meissner’s/tactile corpuscle

Eyelids, fingertips, lips, nipples, genitalia Coiled, interwoven dendrites covered by Schwann cells in a fibrous capsule (ø 40-60μm) Light touch, movement, vibration

Fast adaptation

2) Ruffini corpuscle

Dermis
Dendrites interwoven with collagenous fibres extending into the dermis
Pressure and distortion of the skin
Slow adaptation
3) Pacini/lamellated corpuscle
Dermis, fingers, breasts, genitalia, viscera Dendrites shielded in concentric cell layers Large, ca. 1mm long
Deep pressure, vibration and pulsing
Fast adaptation 

Ruffini corpuscle 

Encapsulated: 

2) Ruffini corpuscle 

Dermis
Dendrites interwoven with collagenous fibres extending into the dermis
Pressure and distortion of the skin
Slow adaptation