Anatomy and Histology
Sensory Systems
Sensory Systems
Kartei Details
Karten | 49 |
---|---|
Sprache | English |
Kategorie | Medizin |
Stufe | Universität |
Erstellt / Aktualisiert | 20.01.2017 / 20.01.2017 |
Weblink |
https://card2brain.ch/box/20170120_anatomy_and_histology2
|
Einbinden |
<iframe src="https://card2brain.ch/box/20170120_anatomy_and_histology2/embed" width="780" height="150" scrolling="no" frameborder="0"></iframe>
|
How receptors work
Receptor specificity: receptor is sensitive to a particular type of stimulus (structure-function)
Receptive field: area monitored by a single receptor cell (size of field and localization are inversely related)
Output via the axon is electrochemical
Tonic receptors: always active, signal frequency varies
according to stimulus, e.g. eye photoreceptors
Phasic receptors: inactive, signal propagated only when stimulated, e.g. skin touch and pressure receptors
Combined tonic and phasic receptors: e.g. proprioceptors Adaptation: reduced sensitivity due to constant stimulation
Types of Receptors - Classification by location
Types of Receptors
Classification by location
Exteroceptors: located on or near body surface. Respond to stimuli that arise external to the body. Detect pressure, touch, pain and temperature
Internoceptors or Visceroceptors: located internally. Receive stimuli from the internal body environment. Activated by pressure, stretching and chemical changes. Also mediate hunger and thirst.
Proprioceptors: specialized type of visceroceptors. Located in skeletal muscle, joint capsules and tendons. Information of body movement, spatial orientation and muscle stretch
Types of Receptors - Classification by structure
Classification by structure
Free nerve endings
Simplest, most common
Terminates in dendritic knobs
Encapsulated nerve endings
Connective tissue capsule surrounding their terminal or dendritic end
Primarily mechanoreceptors
Types of Receptors - Classification by stimulus detected
Classification by stimulus detected
Nociceptors: Pain
Location: skin, joints and bone periostea, blood vessels, some viscera
Free nerve endings, large receptive field (making localizing the source difficult)
Thermo, mechano and chemoreceptors
Fast pain: “stabing” pain perceived in primary sensory cortex, triggers somatic reflexes
Slow pain: “aching” pain activates the thalamus and reticular formation
Thermoreceptors: Temperature
Location: skin dermis, skeletal muscle, liver, hypothalamus
Cold and warm receptors, phasic, i.e. adaptation
Same pathways as nociception to the primary sensory cortex, thalamus and reticular formation
Chemoreceptors: Chemical compounds
Location: respiratory centres (pH and Pco2), carotid bodies (pH, Pco2, Po2),
aortic bodies (pH, Pco2, Po2)
Water and lipid soluble compounds
Mechanoreceptors: Touch
Photoreceptors: Light -
Only in the eye
Cornea
Hornhaut (Augen)
Corneoscleral Layer
Two components: sclera and cornea
Provides: structure, protection, points of attachment
Tough fibro-elastic capsule
Sclera = opaque, dense
fibrous connective tissue,
the “whites” of the eye
Provides attachment for 6
extra-ocular muscles
Nerves and vessels
penetrate the anterior surface (i.e. blood-shot eyes)
Corneal limbus: separates sclera and cornea
Retinal Layers
Pigmented epithelial cells –single layer
Photoreceptor layer - rod and cone processes
Outer limiting membrane - thin eosinophilic structure. Separates photoreceptor layer from outer nuclear layer. Line of intercellular junctions between Muller cells and photoreceptor cells
Outer nuclear layer - contains the cell bodies of the rod and cone photoreceptors.
Outer plexiform layer - contains synaptic connections between the short axons of the photoreceptor cells and integrating neurones
Inner nuclear layer - contains the cell bodies of the integrating neurons
Inner plexiform layer - synaptic connections of integrating neurons with
dendrites of neurones whose axons form the optic tract.
Ganglion cell layer – contains the cells bodies of the optic tract neurons.
Optic nerve fibers layer - layer of afferent fibres passing towards the optic disc to form the optic nerve.
Inner limiting membrane - demarcates the innermost aspect of the retina from the vitreous body VB. Basement membrane of Muller cells.
Rods
Ca. 100 Million in humans
Monochrome
More sensitive to light
Allow night vision
Accumulate rhodopsin (purple)
Absent from fovea and macula
Increased density toward the
periphery of the retina
Cones
Ca. 6 Million in humans
Color
Less sensitive to light
Need more light for stimulation
Accumulate other opsins: red (60%), green (30%), blue (10%)
Most densely concentrated in the fovea
Tympanic membrane
Tympanic membrane: separates the external auditory canal from the middle ear.
Connective tissue membrane (fibrous layer) lined with skin (cuticular layer) on the outside and mucous membrane (mucous layer) on the inside
Fibrous layer is mostly type II and III collagen
Attached to the temporal bone via a
fibrocartilagenous ring
Inner surface attached to the handle of the malleus
Ruptures can heal
The Auditory Ossicles
Smallest bones of the body
Malleus: handle (connected to tympanic membrane), neck, anterior process (attached to wall), head (articulates with incus)
Incus: head (articulates with malleus), short limb (attached to wall), long limb (articulates with stapes)
Stapes: head (articulates with incus), base (fits into oval window)
The Utricle and Saccule
Auslösende Wahrnehmungsreize für die Macula-Organe sind Translationsbeschleunigungen und die Gravitation.
Das Vestibularorgan ist Teil des Innenohrs. Es gehört zu den Sinnesorganen und dient der Steuerung des Gleichgewichts.
2 Anatomie
Das Vestibularorgan besteht beidseits aus drei Bogengängen und zwei Makulaorganen (Sacculus und Utriculus), die von Endolymphe ausgefüllt sind.
3 Funktion
Auslösende Wahrnehmungsreize für die Macula-Organe sind Translationsbeschleunigungen und die Gravitation. Die auslösenden Reize für die Bogengangsorgane sind Drehbeschleunigungen. Von Störungen des Vestibularapparats kann Schwindel ausgehen, wie zum Beispiel beim Morbus Menière.
The Semi-Circular Ducts
Die mit Endolymphe (nicht mit Luft, wie vor der Beschreibung durch den Anatomen Cotugno durchwegs angenommen wurde) gefüllten Bogengänge bilden das Drehsinnorgan und stehen nahezu senkrecht zueinander und erfassen so die Vektorkomponenten der Drehbeschleunigungen des Kopfes im Raum. Sie bestehen jeweils aus dem eigentlichen Bogen und aus einer Erweiterung, der Ampulle. In ihr liegen die Haarzellen der Bogengänge, die Sinneszellen des Gleichgewichtsorgans. Deren Spitzen ragen in einen Gallertkegel, die Cupula, die den Flüssigkeitsring unterbricht. Bei einer Drehbeschleunigung des Kopfes stützt sich die Endolymphe an der Cupula ab, die etwas nachgibt und so die in ihr liegenden Sinneshaarzellen reizt. Deren elektrisches Signal gelangt über den Bogengangnerv zum Gehirn.
The Cochlea
Die Cochlea ist ein Teil des Innenohrs, der an die Form eines Schneckengehäuses erinnert. Er umfasst das Corti-Organ, die Stria vascularis, sowie Endolymphe und Perilymphe. Die Cochlea ist der Sitz der eigentlichen Schallempfindung.
Organ of Corti
1 Definition
Das Corti-Organ ist der eigentliche Sitz des Gehörsinnes in der Cochlea des Innenohrs. Es ist ein System aus Sinnes- und Stützzellen, sowie Nervenfasern.
2 Histologie
Das Corti-Organ sitzt der Basilarmembran (Membrana spiralis) auf und ist nach oben hin durch eine azelluläre Deckmembran (Tektorialmembran) vom Lumen des Ductus cochlearis abgetrennt.
Die für die Schallwahrnehmung verantwortlichen Sinneszellen des Corti-Organs werden Haarzellengenannt. Dabei handelt es sich um Mechanorezeptoren, die an ihrem apikalen Zellpol Stereozilien-Büschel tragen. Ihre Spitzen sind durch feine Zellmembranbrücken verbunden, die so genannten tip links. Man unterscheidet nach ihrer Lokalisation zwei Formen vor Haarzellen
Olfactory Epithelium
1. Sustentacular epithelial cells:
Mechanical and physiological support
Elongated with tapered base on basement membrane
Covered with long microvilli
Outer most layer
2. Basal epithelial cells:
Small, conical
Stem cells for olfactory and sustentacular cells
Inner most, basal layer
Replacement of olfactory receptor cells
3. Olfactory receptor cells:
Middle layer
Bipolar neurones
Single dendrite extending from olfactory middle
stratum to free surface, terminating in an olfactory
knob
Knob covered with up to 20 extremely long non-motile
cilia (olfactory hairs)
Basal aspect has a single axon extending through the
ethmoid bone to the olfactory bulb
Life time of approx. 2 weeks. Are regenerated!
50 different “primary smells”
Olfactory Pathway
Level of odor-producing chemicals reaches threshold
Receptor potential followed bay action potential are formed
Information passed to olfactory nerves, in olfactory bulb
Goes into the thalamic and olfactory centers of the brain
Received information is interpreted, integrated and memorized for future reference
Formation of olfactory memories are also processed by components of limbic system : gyrus and hippocampus
Taste
Taste buds: sense organs that respond to gustatory stimuli
Open at the surface to the taste pore
The majority are locate on the tong projections papillae
Some in the lining of the mouth and throat (mainly in children)
Chemoreceptors
Ca 10000 taste buds in adults
3 types of cells:
Gustatory cells
Supporting cells
Basal cell
Regional differences in their distribution
Fungiform papillae: ca. 5 taste buds
Circumvallate papillae: ca 100 taste buds
Filiform papillae: no taste buds
Gustatory Receptors
Chemoreception
10-12 day life span.
3 types of cells:
Gustatory cells: long microvilli extending into the pore. Taste receptors
Supporting cells: long microvilli extending into the pore
Slender microvilli, taste hairs extend into surrounding fluids via the taste pore
Connected to nerve fibbers
Basal cell: precursor of the other cell types
Meissner’s/tactile corpuscle
Encapsulated:
1) Meissner’s/tactile corpuscle
Eyelids, fingertips, lips, nipples, genitalia Coiled, interwoven dendrites covered by Schwann cells in a fibrous capsule (ø 40-60μm) Light touch, movement, vibration
Fast adaptation
2) Ruffini corpuscle
Dermis
Dendrites interwoven with collagenous fibres extending into the dermis
Pressure and distortion of the skin
Slow adaptation
3) Pacini/lamellated corpuscle
Dermis, fingers, breasts, genitalia, viscera Dendrites shielded in concentric cell layers Large, ca. 1mm long
Deep pressure, vibration and pulsing
Fast adaptation