Differenzialrechnung 1
Grundlagen, und Regeln der Differnezialrechnung
Grundlagen, und Regeln der Differnezialrechnung
Set of flashcards Details
Flashcards | 23 |
---|---|
Language | Deutsch |
Category | Maths |
Level | Other |
Created / Updated | 12.11.2016 / 20.05.2024 |
Weblink |
https://card2brain.ch/box/differenzialrechnung
|
Embed |
<iframe src="https://card2brain.ch/box/differenzialrechnung/embed" width="780" height="150" scrolling="no" frameborder="0"></iframe>
|
Create or copy sets of flashcards
With an upgrade you can create or copy an unlimited number of sets and use many more additional features.
Log in to see all the cards.
\(\frac{d}{dx} \sin x\)
\(\frac{dx}{dy} \sin x = \cos x\)
\(\frac{d}{dx}\cot x\)
\(\frac{dx}{dy} \cot x = - \frac {1}{\sin^2 x} = -1 -\cot^2 x\)
\(\cos x\)
\(\frac{dx}{dy}\cos x = -\sin x\)
Ableitung von \(\tan x \)
\(\frac{dx}{dy} \tan x = \frac {1}{\cos^2 x} = 1 + \tan^2 x\)
Ableitung von ax
\((\ln a) \cdot a^x\)
Ableitung von ln x
\(\frac{1}{x}\)
Ableitung von loga x
\(\frac{1}{(\ln a) \cdot x} \)
Ableitung sinh x
\(\frac{d}{dx}sinh \ x = cosh \ x\)
Ableitung cosh x
\(\frac{d}{dx} cosh \ x = sinh \ x\)
Ableitung tanh x
\(\frac{d}{dx} tanh \ x = \frac{1}{cosh^2 \ x} = 1-tanh^2 \ x \)
Ableitung coth x
\(\frac{d}{dx} coth \ x= -\frac{1}{sinh^2 \ x} = 1-coth^2 \ x \)
Ableitung von xn
\(\frac{d}{dx} x^n = n \cdot x^{n-1}\)
Ableitung von e-x
\(\frac{d}{dx} e^{-x}=-e^{-x}\)
Ableitung von eax
\( \frac{d}{dx} e^{ax}=ae^{ax}\)
Ableitung von sin(ax + b)
\(\frac{d}{dx} sin(ax + b)=a \cdot cos(ax + b)\)
Ableitung von cos(ax + b)
\(\frac{d}{dx} \ cos(ax + b)= -a \cdot sin(ax+b)\)
Ableitung von tan(ax + b)
\(\frac{d}{dx} tan(ax+b)= a \ sec^2(ax+b)\)
Ableitung von cot(ax + b)
\(\frac{d}{dx} cot(ax + b)=-a \cdot cosec^2(ax+b)\)
Ableitung von sin-1(ax + b)
\(\frac{d}{dx} sin^{-1}(ax + b) = \frac{a}{\sqrt{1-(ax+b)^2}} \)
\(x^{-2} =\)
\(\frac{1}{x^2}\)
\(\sqrt[3]{x^5} =\)
\(x^{\frac{5}{3}} \)
\(\frac{dy}{dx} \sqrt{x}\)
\(= x^{-\frac{1}{2}} = \frac{1}{2} \cdot x^{- \frac{1}{2}} = \frac{1}{2 \cdot \sqrt{x}}\)
\(\frac{d}{dx}-x\)
\(-1\)
-
- 1 / 23
-