Actuarial Statistics
Formeln
Formeln
Fichier Détails
Cartes-fiches | 20 |
---|---|
Langue | Deutsch |
Catégorie | Mathématiques |
Niveau | Université |
Crée / Actualisé | 14.10.2024 / 15.10.2024 |
Lien de web |
https://card2brain.ch/box/20241014_actuarial_statistics
|
Intégrer |
<iframe src="https://card2brain.ch/box/20241014_actuarial_statistics/embed" width="780" height="150" scrolling="no" frameborder="0"></iframe>
|
Créer ou copier des fichiers d'apprentissage
Avec un upgrade tu peux créer ou copier des fichiers d'apprentissage sans limite et utiliser de nombreuses fonctions supplémentaires.
Connecte-toi pour voir toutes les cartes.
\(S_0(t) = \)
\(S_0(t) = Pr(T_0 > t) = {}_tp_0\)
Probability that (0) dies after t periods (years) => survival function of \(T_0\)
where:
- \({}_tp_0\)represents the probability that a person aged x survives for at least t years (the t-year survival probability).
\(T_0\)
Time-until-death of a new-born baby
\(F_0(t) = \)
\(F_0(t) = Pr(T_0 ≤ t) = 1- S_0(t) = ...?\)
cummulative distribution function
p.d.f.
Probability Density Function: describes the likelihood of a continuous random variable taking on a particular value, it is used to determine the probability that the variable falls within an interval by integrating the p.d.f. over that interval.
Properties of a p.d.f.
- always non-negative
- The total area under the p.d.f. curve equals 1, ensuring that the total probability over all possible values of the random variable sums to 1.
Example of p.d.f.
If \(f_0(t)\) is the p.d.f. of a random variable X, the probability that X falls between two values a and b is given by:
\(P(a≤X≤b)= ∫_{a}^{b} f_x(x)dx\)
What means \(µ_t\)?
the force of mortality: measures the instantaneous rate of mortality at a specific age x.
Formula, where:
- \(f(x)\) is the p.d.f. of the age-at-death r.v. X. X. It describes the likelihood of death at a specific age x.
- S(x) is the survival function, which gives the probability that an individual aged x survives beyond age x.
- also: the force of mortality is the negative derivative of the natural logarithm of the survivor function.
Cumulative distribution function (CDF)
\(F_0(t) = Pr(T_0 ≤ T) = 1 - S_0(t) = tq_0 \)
CDF of the age-at-death random variable, representing the probability of dying at age xxx or earlier.
where:
- \(tq_0 \)is the probability that a person aged x will die within the next t years.
\({}_tp_x + tq_x = 1\)
- \({}_tp_x \) represents the probability that a person aged x survives for at least t years (the t-year survival probability).
- \(tq_x \) The probability that a person aged x will die within the next t years.
--> they are complementary probabilities
-
- 1 / 20
-