Premium Partner

ISMT

Bayesian inference and time series analysis

Bayesian inference and time series analysis


Kartei Details

Karten 14
Sprache English
Kategorie Mathematik
Stufe Universität
Erstellt / Aktualisiert 02.10.2022 / 05.02.2024
Lizenzierung Kein Urheberrechtsschutz (CC0)
Weblink
https://card2brain.ch/box/20221002_ismte136
Einbinden
<iframe src="https://card2brain.ch/box/20221002_ismte136/embed" width="780" height="150" scrolling="no" frameborder="0"></iframe>

[Statistics]

Given

\(E[X]=\sum_i x_i f(x_i)\)

\(E[X^2] = \text{?}\)

 

\(E[X^2]=Var[X]+E[X]^2\)

We can see that \(E[X^2] \neq E[X]^2 \text{ if } Var[X]\neq 0\)

[Time series analysis]

If AR(1) is causal and given as

\(x_t=\phi x_{t-1}+w_t\text{, where }w_t\sim wn(0, \sigma_w^2)\)

\(Var[x_t]= \text{?}\)

\(\begin{align} &Var[x_t]=var(\alpha + \phi x_{t-1}+w_t) \\&= 0 + var(\phi x_{t-1}) + var(w_t) \\&= \phi^2var(x_{t-1})+\sigma_{w}^2 \\&= \phi^2var(x_{t})+\sigma_{w}^2 &\text{| as series is stationary} \\&= \frac{\sigma{_w}^2}{1-\phi^2}\end{align} \)

[Statistics]

\(cov(aX + bY, cW + dV) = \text{?}\)

\(cov(aX + bY, cW + dV) = ac \cdot cov(X, W) + ad \cdot cov(X, V) + bc\cdot cov(Y, W) + bd\cdot cov(Y, V)\)

[Statistics]

\(cov(X, Y) = \text{?}\)

\(cov(X, Y)=E[XY]-E[X]E[Y]\)

[Time series analysis]

If AR(1) is causal and given as

\(x_t=\phi x_{t-1}+w_t\text{, where }w_t\sim wn(0, \sigma_w^2)\)

(a) Stationary solution?

(b) \(E(x_t)= \text{?}\)

(c) \(\gamma(h)= \text{?}\)

(d) \(\rho(h)= \text{?}\)

[Time series analysis]

If MA(1) is given as

\(x_t=\theta w_{t-1}+w_t\text{, where }w_t\sim wn(0, \sigma_w^2)\)

(a) \(E(x_t) = \text{?}\)

(b) \(\gamma(h)= \text{?}\)

(c) \(\rho(h)= \text{?}\)

[Time series]

In general, the correlation of any (stationary) time series can be calculated through...?

\(\rho(h)=\frac{\gamma(h)}{\gamma(0)}\)

Note:

  •  \(\gamma(0)\) is the variance of the series
  • This only works due to stationarity. Pearson correlation coefficient is actually \(\frac{cov(X, Y)}{\sigma_X\sigma_Y}\)

[Statistics]

\(Var(aX) = \text{?}\)

\(Var(aX) = a^2Var(X)\)

 

Easy proof:

\(Var(aX)=Cov(aX,aX)=E[aXaX]-E[aX]E[aX]\)

\(=a^2E[X^2]-a^2E[X]E[X]=a^2\underbrace{\left[E[x^2]-E[X]E[X]\right]}_{Var(X)}\)