Kann ich kürzen?
\(\frac{ab^3c^2}{ac^3}\)
Ja, oben und unten sind nur Multiplikationen. Die Antwort lautet:
\(\frac{b^3}{c}\)
Kann ich kürzen?
\(\frac{ab^3+c^2}{ac^3}\)
Nein!
Oben steht eine Summe aus der ich auch keine Faktoren ausklammern kann.
Richtig oder falsch?
\(\frac{4a+3}{4a}=\frac{1+3}{1}=4\)
Ganz falsch!
Oben ist eine Summe, da darf man nicht einfach rauskürzen. Nehmen wir mal an a=1 (a kann ja irgend eine Zahl sein, also auch 1) und setzen ein. Dann wäre unsere Behauptung nun:
\(\frac{4+3}{4}=\frac{1+3}{1}=4\)
was ja offensichtlich nicht wahr ist.
Unbedingt müssen wir beide Zahlen über dem Bruchstrich mit dem Nenner dividieren.
Richtig oder falsch?
\(\frac{4}{4+y}\)
kann man nicht kürzen.
Richtig!
(Unten ist eine Summe. Wenn wir uns Zahlen vorstellen, nehmen wir mal für y = 3, dann wäre es: \(\frac{4}{4+3}\).
Hier ist hoffentlich ersichtlich, dass man nicht Kürzen kann, sondern unten einfach zusammenzählen muss.
Das ist das einzige was wir tun können. Nur wissen wir nicht, was y ist, also müssen wir den Nenner als 4+y stehen lassen.
Wenn wir
\(\frac{x^2+b^2}{x+b}\)
kürzen möchten. Können wir das und wenn ja, wie lautet das Resultat?
\(\frac{x^2+b^2}{x+b}\) lässt sich nicht kürzen! Oben steht keine binomische Formel, also können wir nicht in Faktoren zerlegen und entsprechend dann auch nicht kürzen.
Können wir
\(\frac{x^2-b^2}{x+b}\)
kürzen? Und wenn ja, wie lautet das Resultat?
\(\frac{x^2-b^2}{x+b} = \frac{(x-b)(x+b)}{x+b} = x-b\)
Hier ist oben die dritte binomische Formel, entsprechend können wir in Faktoren zerlegen und dann kürzen.
(ev. hilft es Ihnen, wenn Sie sich unten eine Klammer vorstellen (x+b)).
Kann ich kürzen?
\(\frac{2-x-x^2}{x-1}\)
Und wenn ja, wie lautet das Resultat?
Oben ist eine binomisch Formel versteckt, die Reihenfolge ist einfach ungewohnt und die Vorzeichen sind zu überlegen.
\(2-x-x^2 = -x^2-x+2 = (-x+1)(x+2)\)
Also können wir weiterrechnen:
\(\frac{(-x+1)(x+2)}{x-1} = \frac{(-1)(x-1)(x+2)}{x-1} = (-1)(x+2) = -x-2\)
Wenn ich \(\frac{1}{4} + \frac{1}{5}\) zusammenzählen will, dann muss ich gleichnamig machen. Wie mache ich das?