Satellite Geodesy
Exam questions of the lecture «Satellite Geodesy» by Prof. Dr. Rothacher, D-BAUG, ETH Zürich
Exam questions of the lecture «Satellite Geodesy» by Prof. Dr. Rothacher, D-BAUG, ETH Zürich
Set of flashcards Details
Flashcards | 101 |
---|---|
Students | 15 |
Language | English |
Category | Geography |
Level | University |
Created / Updated | 17.01.2012 / 03.02.2022 |
Weblink |
https://card2brain.ch/box/satellite_geodesy
|
Embed |
<iframe src="https://card2brain.ch/box/satellite_geodesy/embed" width="780" height="150" scrolling="no" frameborder="0"></iframe>
|
Order of magnitude of the ionosphere delay for VLBI, GPS, SLR
GPS (f~1 GHz): zenith direction: 1-15 m, low elevations: up to 150 m //
VLBI: S-band (f~2 GHz) _ similar to GPS, X-band (f~8 GHz) _ 4-60 cm // SLR/LLR: (f~5*1014 Hz) _ ionospheric refraction has no influence
How is the ionospheric delay corrected for in VLBI, GPS, SLR?
The ionospheric refraction is computed by an integration of the refractive index n along the path s of the signal (neglecting S - G). // Ne… electron density // S … lengths of the actual, real signal path // G … straight lined geometric distance
Altitude range of the troposphere
0-10km
On what does the refractivity depend in the case of the troposphere?
on the refractive index n=c/v (ratio of speed of light c in the vacuum and the speed of light v in the atmosphere
Difference between dry and wet part of the delay
The dry part accounts for about 90% of the total delay and is mainly depending on the pressure of the dry air and can be modelled quite well based on pressure measurements on the ground. In general the air pressure and so the dry part of the delay is changing rather slowly with time (2 cm/12 hours) // The wet part (caused by water vapor) only amounts to a maximum about 40 cm but is highly variable in time and space and therefore very difficult to model because of the unknown distribution of water vapor and water in the atmosphere.
How is the tropospheric delay corrected for in VLBI, GPS, and SLR?
Mapping functions (simpelst with 1/cos(z))
Difference in the influence of the troposphere on VLBI, GPS, SLR?
For radio waves in the frequency range from 100 MHz to about 15 GHz (as in case of VLBI and GPS) the refractive index n is independent of the frequency (--> identical delay for all frequencies) // For optical wavelengths (SLR/LLR with a frequency of around 5*1014Hz ) the tropospheric refraction is dispersive
Order of magnitude of the tropospheric delay for VLBI, GPS, SLR?
The total delay (dry and wet part) amounts to about 2.3 m in the zenith direction (~8 ns in time units) and about 25 m at an elevation of 5°.
The wet part is maximal 40 cm.
What is a mapping function? Expression for the simplest mapping function
Often the TEC value in zenith direction (VTEC = Vertical Total Electron Content) is modelled and not directly the TEC in a given direction. With the mapping function mion(z) and the VTEC EV as input parameter it is possible to compute the TEC E for an arbitrary angle z.
Difference between the mapping function for the ionosphere (single layer) and for the troposphere
(z … zenith angle) ionosphere: mion(z)=1/cos(z') and sin(z')=R/(R+H)*sin(z) // troposphere: mtrp(z)=1/cos(z)
How are troposphere parameters estimated? What are the difficulties?
GPS (estimation) and Meteo-Measurements // big local and temporal differences
Saastamoinen-Modell, Modellierung der tropospährischen Refraktion. Erster Term in runder Klammer: dry Part. Zweiter Term in runder Klammer: wet Part. Dritter Term in runder Klammer: Erdkrümmung. P: Luftdruck, T: Temperatur, e: Wasserdampfdruck , berechnbar aus relativer Luftfeuchtigkeit
Wie gross ist der Einfluss der Troposphäre bei GPS, VLBI, Altimetrie?
GPS: (non-dispersive) 2.3m (Zenith) (wetpart: 5-40cm), 25m (5° elev) // VLBI: (non-dispersive) dito // Altimetrie: (non-dispersive) dito // SLR/LLR: (dispersive) 2.45 (Zenith) (wetpart: 0.1-0.6cm), 7m (20° elev)
Wie gross ist der Einfluss der Ionosphäre bei GPS, VLBI, Altimetrie?
GPS: (dispersive) 1-15m (Zenith), 150m (low elev) // VLBI: (dispersive) S-Band (2GHz), wie GPS, X-Band (8GHz) 4-60cm // Altimetrie: (dispersive) 2-20cm // SLR/LLR: (non-dispersive) ionospheric refraction doesn’t play any role!4
Rotation der Erde: Ist das etwas konstantes?
Nein. Die Erdrotation wird durch die Gezeitenreibung verlangsamt. Die Erde hat das gleiche schon mit dem Mond “gemacht”
Weshalb besteht ein Zusammenhang zwischen Verlangsamung der Erdrotation und Entfernung des Mondes?
Es gibt drei Erhaltungssätze in der Physik, hier: Drehimpuls muss erhalten bleiben
Was für Effekte bewirkt der Mond sonst noch? (abgesehen von der Gezeitenreibung)
Feste Erdgezeiten, Schwankungen in der Erdrotationsachse, davon abgeleitet auch Polgezeiten, er wollte noch auf generelle Relativität bei Mondnahen VLBI-Messungen hinaus.
Wie kann man die Erdrotation und ihre Änderung messen?
GNSS, LLR, VLBI
Wo in der ausgleichungsrechnung werden die parameter für die
troposphärische refraktion eingesetzt? Was kommt raus, etc?
Page 101, In the Observation Equation
=> The Partial derivative of the Obs. Equ. gives the Mapping Function.