POF T2
pof
pof
Set of flashcards Details
Flashcards | 336 |
---|---|
Language | Deutsch |
Category | Physics |
Level | Other |
Created / Updated | 16.05.2015 / 22.07.2020 |
Weblink |
https://card2brain.ch/box/pof_t2
|
Embed |
<iframe src="https://card2brain.ch/box/pof_t2/embed" width="780" height="150" scrolling="no" frameborder="0"></iframe>
|
What is the approximate radius of a steady, level, co-ordinated turn with a bank angle of 30° and a TAS of 500 kt?
12 km
An aeroplane climbs to cruising level with a constant pitch attitude and maximum climb thrust (assume no supercharger). How do the following variables change during the climb? (gamma = flight path angle)
==> GAMA; IAS; AOA
gamma decreases, angle of attack increases, IAS decreases.
Static directional stability: Dorsal fin and ventral fin?
1. Dorsal Fin: directional stabilisierend => Dass das Leitwerk nicht zu hoch ist (destabilisierend) Jedoch sollte man die Fläche des Ruders beibehalten => Dorsal fin
2. Ventral vin: destabilisierend => Dass es nicht zu stark directional stable ist =>Dutch roll (Lateral stability is large compared to directional stability
Given: Aeroplane mass: 50'000 kg Lift/Drag ratio: 12 Thrust per engine: 28'000 N Assumed g: 10 m/s2 For a straight, steady, wings level climb of a three-engine aeroplane, the one engine inoperative climb gradient will be:
2.9%
The maximum glide range of an aircraft will depend on wind and:
the ratio of lift to drag which varies according to angle of attack.
In a steady climb:
If an aeroplane performs a steady co-ordinated horizontal turn at a TAS of 200 kt and a turn radius of 2000 m, the load factor (n) will be approximately:
1.1
An aeroplane performs a continuous descent with 160kts IAS and 1'000 ft/min vertical speed. In this condition:
Given: Aeroplane mass: 50'000 kg Lift/Drag ratio: 12 Thrust per engine: 20'000 N Assumed g: 10 m/s2 For a straight, steady, wings level climb of a four-engine aeroplane, the all engines climb gradient will be:
7.7 %
In a slipping turn (nose pointing outwards), compared with a co-ordinated turn, the bank angle (i) and the "ball" or slip indicator (ii) are respectively:
(i) to large; (ii) displaced towards the low wing.
What is the standard stall recovery for a light aircraft? Rudder, Pitch, stick
Pitch down, stick neutral roll, correct for bank with rudder.
The TAS of an aircraft at the stalling angle of attack at a given weight:
At the stalling angle of attack the lift/drag ratio will be:
lower than at the optimum angle of attack.
Wie rechnet man:
1. Kurvenradius
2. Turn Rate
3. Stallingsspeed im Kurvenflug
4. N
5. V Sturn V1GTurn
1. \(R = {v^2 \over g * tan (y)}\)
2. \(w = {g \over v} * tan(y)\)
3. S1g *\({\sqrt{n} }\)
4. \(n = {1\over cos(y)}\)
5. \(x = { \sqrt{2n * W\over p* Sw * Cl max} }\) ==> Kleinst mögliche speed im Turn
The vane of a stall warning system with a flapper switch is activated by the change of the:
stagnation point
Max. turning Capacity => The steeper the change of Bank, what happen?
a) greater Rate of Turn
b) less Radius of turn
c) higher stalling speed
d) greazer wing load
In what flight condition must an aircraft be placed in order to spin?
stalled
==> The higher the airspeed in a turn:
a) the slower the rate of turn
b) the larger the radius of turn
A wing stalling angle is: => In a turn?
unaffected by a turn.
Forces during climb
Je steiler, desto mehr trägt der Schub ein Teil des Gewichtes =>Drag + Gewicht => T = D + w * sin(y)
Negative tail stall is:
a sudden reduction in the downward aerodynamic force on the tailplane.
Clim Gradient
CG = Höhe die ich zurücklege, bezogen auf die zurückgelegen AIR DISTANCE (not ground)
CG = \( { T - D \over W} * 100% \) für % => unbeschleunigter Climb 100% = 45 Grad
CG = \(= { T \over W} - { Cd \over Cl}\)
The critical angle of attack:
ROC
Rate of climb => \(ROC = { Pa - Pr \over W}\) oder \(ROC = {CG \over 100} * v\)
=> unbeschkeuigter ROC
Further effects on the Climb Performance
a) Altitude
b) aircraft weight
c) Flap settings
d) const. wind
a) Altitude: mit zunehmneder Höhe nimmt Dichte ab = schub nimmt ab = Auftreib bleibt jedoch gleich
b) aircraft weight: Meisten Einfluss => Gewicht nimmt z + Drag ==> Auf 2 Sachen hat es einen EInfluss
c) Flap settings: erhöhen D => Steigt schlecht => ny nimmt stärker ab als Vx
d) const. wind: keinen Einfluss => CG hängt nicht vom Wind ab => Nur über den Winkel über Grund (Flight Path ANgle)
CG = \( {T - D \over W}\)
Lift muss immer gleich
Lift = Weight