physikalische Grundlagen der Biochemie
Formeln aus Glockshubers Skribt: Biochemie und Molekularbiologie HS 18
Formeln aus Glockshubers Skribt: Biochemie und Molekularbiologie HS 18
Kartei Details
Karten | 27 |
---|---|
Sprache | English |
Kategorie | Biologie |
Stufe | Universität |
Erstellt / Aktualisiert | 05.01.2019 / 20.01.2019 |
Weblink |
https://card2brain.ch/box/20190105_physikalische_grundlagen_der_biochemie
|
Einbinden |
<iframe src="https://card2brain.ch/box/20190105_physikalische_grundlagen_der_biochemie/embed" width="780" height="150" scrolling="no" frameborder="0"></iframe>
|
Lernkarteien erstellen oder kopieren
Mit einem Upgrade kannst du unlimitiert Lernkarteien erstellen oder kopieren und viele Zusatzfunktionen mehr nutzen.
Melde dich an, um alle Karten zu sehen.
velocity v of a chemical reaction
\(v=-\frac{d[A]}{dt}=-\frac{d[B]}{dt}=\frac{d[C]}{dt}=\frac{d[D]}{dt}\) unit: Ms-1 or L-1s-1
half-life of a first-order reaction
\(t_{1/2}=\frac{\ln2}{k}=\frac{0.693}{k}=0.693\cdot \tau,\ \tau=\frac{1}{k}\) is the "time constant" (unit: s)
initial velocity vi of a first-order reaction
\(v_i=k\cdot[A_0]\)
velocity of a second order reaction
\(A+B\xrightarrow[]{k}C,\ \frac{[A]}{dt}=-k\cdot[A]\cdot[B]\)
simplest case of a second-order reaction \(([A]=[B])\)
\(-\frac{d[A]}{dt}=k\cdot[A]^2 \rightarrow-\int^{[A]}_{[A]=A_0}\frac{d[A]}{[A]^2}=k\cdot\int^t_0dt\)
\(\rightarrow \frac{1}{[A]}-\frac{1}{[A_0]}=k\cdot t \leftrightarrow [A]=\frac{1}{k\cdot t+\frac{1}{[A_0]}}\)
Gibbs free energy and reduction potential
\(\Delta G^{\circ '}=-n\cdot F\cdot \Delta E'_0\)
Free energy change during proton transport
\(\Delta G_{Transport}=R\cdot T\cdot \ln \frac{c_2}{c_1}+z\cdot F\cdot\Delta V\)
first order rate constant, pseudo-first order reactions
\(\mathrm{A+B\rightarrow C;\ [A_0]\gg[B_0]}\)
\(k_{pseudo}=k[A_0]\ \mathrm{unit\ s^{-1}}\)
\([B]=[B_0]\cdot e^{-k_{psuedo}\cdot t}\)
half-life pseudo-first order reactions
\(t_{1/2}=\frac{\ln2}{k_{pseudo}}=\frac{\ln2}{k\cdot [A_0]}\)
upper limit for the second-order rate constant in water
small molecules: \(7\cdot 10^9 M^{-1}s^{-1}\)
protein-ligand interactions: \(10^8-10^9 M^{-1}s^{-1}\)
reaction velocity of a zero-order reaction
\(v=-\frac{d[A]}{dt}=k\)
Arrhenius equation
\(k=A\cdot e^{-E_A/RT}\)
link the acceleration factor to the energy
\(\frac{k_{cat}}{k_{uncat}}=e^{\frac{\Delta E_A}{RT}}\)
Wich criteria do enzymes meet?
- Enzymes accelerate chemical reactions by lowering the activation energy. - Enzymes leave the reaction they are catalysing in the same state in which they entered the reaction.
- Enzymes act in substoichiometric (catalytic) amounts because an individual enzyme catalyses the same reaction over and over again (multiple turnovers).
- Under conditions where the substrate concentration is lower than enzyme concentration ([S0]>>[E0]), the velocity of the catalyzed reaction increases linearly with enzyme concentration.
- Enzymes show saturation behaviour at high substrate concentrations: When all binding sites are occupied with substrate, the maximum reaction velocity (vmax) is reached and stays constant even when substrate concentration is further increased (zero order reaction conditions, see 1.4.).
- Enzymes accelerate the forward and reverse reaction by the same factor. Therefore, they do not change the equilibrium (energy difference) between substrate and product,
but they accelerate the attainment of the equilibrium between substrate and product.
Michaelis Menten Equation of the simplest case of a reaction catalyzed by an enzyme.
\(\mathrm{E+S \overset{k_1}{\underset{k_{-1}}{\rightleftharpoons}} ES \overset{k_{cat}}{\longrightarrow} E+P}\)
\(\mathrm{v_i=v_{max}\frac{[S]}{K_M+[S]},\ v_{max}=k_{cat}\cdot[E_0]}\)
The turnover number (Wechselzahl)
\(\mathrm{k_{cat} }\)
- maximum number of chemical conversions of substrate molecules per second that a single catalytic site will execute for a given enzyme concentration \( \mathrm{\displaystyle [E_{T}]}\).
- first order rate constant, cannot be any greater than any first-order rate constant on the forward reaction pathway
- is the slowest unimolecular step in the catalytic cycle of an enzyme
- in range of \(\mathrm{10^5-10^6\ s^{-1}}\)
- \(\mathrm{\frac{1}{k_{cat}}=}\)time required to convert a single substrate molecule to product in the steady state at saturating [S]
specificity constant
\(\mathrm{ k_{cat}/K_M\ unit\ M^{-1}s^{-1} }\)
- how efficiently an enzyme converts substrates into products
- The higher the specificity constant, the more the enzyme "prefers" that substrate.
- second-order rate constant
- refers to the properties and the reactions of the free enzyme and free substrate
- used for quantifying the catalytic efficiency of an enzyme
- \(\mathrm{ k_{cat}/K_M \leq }\) second-order rate constant on the forward reaction pathway
- maximum theoretical value: \(\mathrm{ \sim 10^9\ M^{-1}s^{-1} }\) (value of a diffusion controlled second-order reaction)
- most efficient enzyme known is superoxide dismutase \(\mathrm{7\cdot 10^9 \ M^{-1}s^{-1}}\)
Michaelis Menten kinetics if an enzyme has two substrates and two products
\(\mathrm{ Glucose+ATP \overset{[Hexokinase]}{\longrightarrow} Glucose-6-phosphate+ADP }\)
\(\mathrm{ v_i=k_{cat}\cdot[E_0]\cdot \left[\frac{[Glucose]}{K_{M\ Glucose}+[Glucose]} \right]\cdot\left[ \frac{[ATP]}{K_{M\ ATP}+[ATP]} \right] }\)
the enzyme only works with 0.25 \(\mathrm{ v_{max} }\) if \(\mathrm{ [Glucose]=K_{M\ Glucose} }\) and \(\mathrm{ [ATP]=K_{M\ ATP} }\).
If both binding sites are 50% occupied, only 25% of the enzyme molecules will be occupied with both substrates (requirement for catalysis).
The KM values of both substrate must be determined independently!
two rate constant
- defines a simple binding equilibrium
- kon for the association of the protein P and its ligand L to the protein-ligand complex PL
- koff for the spontaneous dissociation of PL
- \(\mathrm{ P+L\overset{k_{on}}{\underset{k_{off}}{\rightleftharpoons}}PL }\)
two rate constant in the binding equilibrium
\(\mathrm{k_{on}\cdot P\cdot L=k_{off}\cdot PL}\)
dissociation constant of the PL complex
\(\mathrm{K_{Diss}=\frac{k_{off}}{k_{on}}=\frac{P\cdot L}{PL}=\frac{1}{K_a} \ unit: M}\)
Ka can be used to describe the strength of interaction of a protein-ligand complex (unit: M-1)
Protein and Ligand concentration if \(\mathrm{ P_{tot}\ll L_{tot} \ (L_{tot}\gg P_{tot})}\)
\(\mathrm{\Delta G^{\circ} {'}}\)
\(\mathrm{\Delta G^{\circ} {'}=+\mathrm{\Delta G^{\circ} {'}}\ Produkt-\mathrm{\Delta G^{\circ} {'}}\ Edukt}\)
-
- 1 / 27
-